English
Deutsch
TU Dresden

search

Vertebrate tissue repair and regeneration - Tatiana Sandoval-Guzmán

The vertebrate limb contains various tissue types including bone, skin, nerves, muscle and blood vessels. After an injury these tissues respond to a plethora of signals driving repair and, in few animal species, regeneration. Our main goal is to understand how individual tissues respond to an injury to further understand their interaction during axolotl limb regeneration. The fine-tuned coordination of both, the individual tissue regeneration and the interaction with other tissue types could be the key for successful appendage regeneration. Moreover, we aim to find differences and similarities between axolotl and mammalian regeneration, in order to identify key components that promote or restrict regeneration in mammals.



Previous and current research

Figuring out how to unlock the inherent regeneration potential in mammals and specifically in humans requires a practical model of regeneration. Axolotl is a powerful model where transgenesis has proven useful for studying molecular and cellular mechanisms of regeneration. Another advantage of this animal model is its semitransparent body, allowing intra-vital imaging of the limb. Axolotl represents a simplified organism in comparison with mammals, yet more complex than other animal models, that is uniquely suited to study bone formation, and appendage phenotypes. more

Future projects and goals

Our long-term goal is to build an understanding of regeneration, alternating between an organism with high regenerative potential and one with very limited regeneration. This will facilitate bridging our discoveries from the axolotl into viable mammalian therapeutics that can impact human regeneration.

Selected publications

Khattak S., Murawala P., Andreas H., Kappert V., Schuez M., Sandoval-Guzmán T., Crawford K., Tanaka E.M. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nature Protocols, 2014, Vol. 9(3):529-40.

Sandoval-Guzmán T., Wang H., Khattak S., Schuez M., Rönsch K., Nacu E., Tazaki A., Joven A., Tanaka E.M., Simon A. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell, 2014, Vol.14(2):174-87.

Khattak S., Schuez M., Richter T., Knapp D., Hiago S.L., Sandoval-Guzmán T., Hradlikova K., Duemmler A., Kerney R., Tanaka E.M. Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Reports, 2013, Vol. 1(1):90-103.

Khattak S., Sandoval-Guzmán T., Stanke N., Tanaka E.M., Lindemann D. Foamy virus for efficient gene transfer in regeneration studies. BMC Developmental Biology, 2013, Vol. 13 Article Number 17.

 

Group members

Contact

Group Leader

Dr. Tatiana Sandoval Guzmán
tatiana.sandoval-guzman[at]crt-dresden.de

Assistant to Group Leader

Anne-Kathrin Gerber
Anne-Kathrin.Gerber[at]tu-dresden.de

Phone: +49 (0)351 458 82354